Copied to
clipboard

G = C32:3F5order 180 = 22·32·5

2nd semidirect product of C32 and F5 acting via F5/D5=C2

metabelian, supersoluble, monomial, A-group

Aliases: C32:3F5, C15:1Dic3, C3:(C3:F5), (C3xC15):2C4, C5:(C3:Dic3), D5.(C3:S3), (C3xD5).3S3, (C32xD5).1C2, SmallGroup(180,22)

Series: Derived Chief Lower central Upper central

C1C3xC15 — C32:3F5
C1C5C15C3xC15C32xD5 — C32:3F5
C3xC15 — C32:3F5
C1

Generators and relations for C32:3F5
 G = < a,b,c,d | a3=b3=c5=d4=1, ab=ba, ac=ca, dad-1=a-1, bc=cb, dbd-1=b-1, dcd-1=c3 >

Subgroups: 180 in 36 conjugacy classes, 19 normal (7 characteristic)
Quotients: C1, C2, C4, S3, Dic3, C3:S3, F5, C3:Dic3, C3:F5, C32:3F5
5C2
45C4
5C6
5C6
5C6
5C6
15Dic3
15Dic3
15Dic3
15Dic3
5C3xC6
9F5
5C3:Dic3
3C3:F5
3C3:F5
3C3:F5
3C3:F5

Character table of C32:3F5

 class 123A3B3C3D4A4B56A6B6C6D15A15B15C15D15E15F15G15H
 size 152222454541010101044444444
ρ1111111111111111111111    trivial
ρ2111111-1-11111111111111    linear of order 2
ρ31-11111-ii1-1-1-1-111111111    linear of order 4
ρ41-11111i-i1-1-1-1-111111111    linear of order 4
ρ522-1-12-10022-1-1-1-1-1-1-122-1-1    orthogonal lifted from S3
ρ622-1-1-12002-12-1-12-1-12-1-1-1-1    orthogonal lifted from S3
ρ722-12-1-1002-1-1-12-122-1-1-1-1-1    orthogonal lifted from S3
ρ8222-1-1-1002-1-12-1-1-1-1-1-1-122    orthogonal lifted from S3
ρ92-2-12-1-1002111-2-122-1-1-1-1-1    symplectic lifted from Dic3, Schur index 2
ρ102-22-1-1-100211-21-1-1-1-1-1-122    symplectic lifted from Dic3, Schur index 2
ρ112-2-1-12-1002-2111-1-1-1-122-1-1    symplectic lifted from Dic3, Schur index 2
ρ122-2-1-1-120021-2112-1-12-1-1-1-1    symplectic lifted from Dic3, Schur index 2
ρ1340444400-10000-1-1-1-1-1-1-1-1    orthogonal lifted from F5
ρ1440-2-24-200-100001+-15/21--15/21+-15/21--15/2-1-11+-15/21--15/2    complex lifted from C3:F5
ρ1540-2-2-2400-10000-11--15/21+-15/2-11--15/21+-15/21--15/21+-15/2    complex lifted from C3:F5
ρ1640-24-2-200-100001+-15/2-1-11--15/21+-15/21--15/21--15/21+-15/2    complex lifted from C3:F5
ρ1740-2-24-200-100001--15/21+-15/21--15/21+-15/2-1-11--15/21+-15/2    complex lifted from C3:F5
ρ1840-24-2-200-100001--15/2-1-11+-15/21--15/21+-15/21+-15/21--15/2    complex lifted from C3:F5
ρ19404-2-2-200-100001+-15/21+-15/21--15/21--15/21--15/21+-15/2-1-1    complex lifted from C3:F5
ρ2040-2-2-2400-10000-11+-15/21--15/2-11+-15/21--15/21+-15/21--15/2    complex lifted from C3:F5
ρ21404-2-2-200-100001--15/21--15/21+-15/21+-15/21+-15/21--15/2-1-1    complex lifted from C3:F5

Smallest permutation representation of C32:3F5
On 45 points
Generators in S45
(1 31 16)(2 32 17)(3 33 18)(4 34 19)(5 35 20)(6 36 21)(7 37 22)(8 38 23)(9 39 24)(10 40 25)(11 41 26)(12 42 27)(13 43 28)(14 44 29)(15 45 30)
(1 11 6)(2 12 7)(3 13 8)(4 14 9)(5 15 10)(16 26 21)(17 27 22)(18 28 23)(19 29 24)(20 30 25)(31 41 36)(32 42 37)(33 43 38)(34 44 39)(35 45 40)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)
(2 3 5 4)(6 11)(7 13 10 14)(8 15 9 12)(16 31)(17 33 20 34)(18 35 19 32)(21 41)(22 43 25 44)(23 45 24 42)(26 36)(27 38 30 39)(28 40 29 37)

G:=sub<Sym(45)| (1,31,16)(2,32,17)(3,33,18)(4,34,19)(5,35,20)(6,36,21)(7,37,22)(8,38,23)(9,39,24)(10,40,25)(11,41,26)(12,42,27)(13,43,28)(14,44,29)(15,45,30), (1,11,6)(2,12,7)(3,13,8)(4,14,9)(5,15,10)(16,26,21)(17,27,22)(18,28,23)(19,29,24)(20,30,25)(31,41,36)(32,42,37)(33,43,38)(34,44,39)(35,45,40), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45), (2,3,5,4)(6,11)(7,13,10,14)(8,15,9,12)(16,31)(17,33,20,34)(18,35,19,32)(21,41)(22,43,25,44)(23,45,24,42)(26,36)(27,38,30,39)(28,40,29,37)>;

G:=Group( (1,31,16)(2,32,17)(3,33,18)(4,34,19)(5,35,20)(6,36,21)(7,37,22)(8,38,23)(9,39,24)(10,40,25)(11,41,26)(12,42,27)(13,43,28)(14,44,29)(15,45,30), (1,11,6)(2,12,7)(3,13,8)(4,14,9)(5,15,10)(16,26,21)(17,27,22)(18,28,23)(19,29,24)(20,30,25)(31,41,36)(32,42,37)(33,43,38)(34,44,39)(35,45,40), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45), (2,3,5,4)(6,11)(7,13,10,14)(8,15,9,12)(16,31)(17,33,20,34)(18,35,19,32)(21,41)(22,43,25,44)(23,45,24,42)(26,36)(27,38,30,39)(28,40,29,37) );

G=PermutationGroup([[(1,31,16),(2,32,17),(3,33,18),(4,34,19),(5,35,20),(6,36,21),(7,37,22),(8,38,23),(9,39,24),(10,40,25),(11,41,26),(12,42,27),(13,43,28),(14,44,29),(15,45,30)], [(1,11,6),(2,12,7),(3,13,8),(4,14,9),(5,15,10),(16,26,21),(17,27,22),(18,28,23),(19,29,24),(20,30,25),(31,41,36),(32,42,37),(33,43,38),(34,44,39),(35,45,40)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45)], [(2,3,5,4),(6,11),(7,13,10,14),(8,15,9,12),(16,31),(17,33,20,34),(18,35,19,32),(21,41),(22,43,25,44),(23,45,24,42),(26,36),(27,38,30,39),(28,40,29,37)]])

C32:3F5 is a maximal subgroup of   C3:S3xF5  S3xC3:F5
C32:3F5 is a maximal quotient of   C30.Dic3

Matrix representation of C32:3F5 in GL6(F61)

0600000
1600000
001000
000100
000010
000001
,
6010000
6000000
0033066
005527550
000552755
0066033
,
100000
010000
0060606060
001000
000100
000010
,
1100000
11500000
001000
000001
000100
0060606060

G:=sub<GL(6,GF(61))| [0,1,0,0,0,0,60,60,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[60,60,0,0,0,0,1,0,0,0,0,0,0,0,33,55,0,6,0,0,0,27,55,6,0,0,6,55,27,0,0,0,6,0,55,33],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,60,1,0,0,0,0,60,0,1,0,0,0,60,0,0,1,0,0,60,0,0,0],[11,11,0,0,0,0,0,50,0,0,0,0,0,0,1,0,0,60,0,0,0,0,1,60,0,0,0,0,0,60,0,0,0,1,0,60] >;

C32:3F5 in GAP, Magma, Sage, TeX

C_3^2\rtimes_3F_5
% in TeX

G:=Group("C3^2:3F5");
// GroupNames label

G:=SmallGroup(180,22);
// by ID

G=gap.SmallGroup(180,22);
# by ID

G:=PCGroup([5,-2,-2,-3,-3,-5,10,122,483,2704,1809]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^5=d^4=1,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^3>;
// generators/relations

Export

Subgroup lattice of C32:3F5 in TeX
Character table of C32:3F5 in TeX

׿
x
:
Z
F
o
wr
Q
<